منابع مشابه
Computing Nonsimple Polygons of Minimum Perimeter
We provide exact and approximation methods for solving a geometric relaxation of the Traveling Salesman Problem (TSP) that occurs in curve reconstruction: for a given set of vertices in the plane, the problem Minimum Perimeter Polygon (MPP) asks for a (not necessarily simply connected) polygon with shortest possible boundary length. Even though the closely related problem of finding a minimum c...
متن کاملThe perimeter generating function of punctured staircase polygons
Using a simple transfer matrix approach we have derived very long series expansions for the perimeter generating function of punctured staircase polygons (staircase polygons with a single internal staircase hole). We find that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of order 8. We perform an analysis of the properties of the differ...
متن کاملConvex lattice polygons of fixed area with perimeter-dependent weights.
We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal lattices. We attach a weight tm to a convex polygon of perimeter m and show that the sum of weights of all polygons with a fixed area s varies as s(-theta(conv))eK(t)square root(s) for large s and t less than a critical threshold tc, where K(t) is a t-dependent constant, and theta(conv) is a ...
متن کاملBundling Three Convex Polygons to Minimize Area or Perimeter
Given a set P = {P0, . . . , Pk−1} of k convex polygons having n vertices in total in the plane, we consider the problem of finding k translations τ0, . . . , τk−1 of P0, . . . , Pk−1 such that the translated copies τiPi are pairwise disjoint and the area or the perimeter of the convex hull of ⋃k−1 i=0 τiPi is minimized. When k = 2, the problem can be solved in linear time but no previous work ...
متن کاملRanking Small Regular Polygons by Area and by Perimeter
From the pentagon onwards, the area of the regular convex polygon with n sides and unit diameter is greater for each odd number n than for the next even number n + 1. Moreover, from the heptagon onwards, the difference in areas decreases when n increases. Similar properties hold for the perimeter. A new proof of a result of Reinhardt follows.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2019
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972718001612